Information Visualization: Difference between revisions

From InfoVis:Wiki
Jump to navigation Jump to search
Who wants to read her quote? Ok, don't need to http://exeskaback1988.proboards.com/#how_to_get_no_file_hosting_itunes_10_6_3_for_windows how to get no file hosting iTunes 10.6.3 For Windows be hurry a
Removing spam links
 
(180 intermediate revisions by 4 users not shown)
Line 1: Line 1:
Who wants to read her quote? Ok, don't need to http://exeskaback1988.proboards.com/#how_to_get_no_file_hosting_itunes_10_6_3_for_windows how to get no file hosting iTunes 10.6.3 For Windows be hurry and rushing yourself. Below, you can expect to see her amazing pics and even http://ylsp2752cgo.tumblr.com/#download_direct_link_mechwarrior_4 download direct link Mechwarrior 4 some videos from movies. Welcome to Megan Fox porn review where http://protopage.com/30fradevmerto1984/#how_to_get_no_virus_snipping_tool_for_windows_xp how to get no virus Snipping Tool For Windows Xp you will find out the naked truth about every single little detail of that hot video. Of course some major parts like her pussy and ass are covered as well as her nipples, but still you have a http://benzdicardbel197320.eklablog.com/#where_from_download_for_free_elf_on_the_shelf_story where from download for free Elf On The Shelf Story lot to look there. Do you remember Olivia appearing in some commercials like Pepsi, Nike or Hewlett-Packard? I do and those were great commercials by http://azxwafdq.mywapblog.com/#download_no_virus_diced_pineapples_instrumental download no virus Diced Pineapples Instrumental the way. I know she looks taller because of her long and quite shapely legs and great http://ciofoconre197628.jigsy.com/#download_fast_aol_desktop_9_7 download fast Aol Desktop 9.7 proportions. Everybody saw Kendra Wilkinson naked I guess but even if some of you haven't it ain't http://rafastiogar198024.eklablog.com/#get_fast_amnesia_the_dark_descent_full_version get fast Amnesia The Dark Descent Full Version a problem. That's why I suggest you to watch some Susan http://bhpcvnsq.mywapblog.com/#where_from_get_direct_link_hypercam where from get direct link HyperCam Backlinie nude photos for the start. Then, all of the sudden on dude comes to http://en.gravatar.com/dervepuncno1983/#how_to_download_google_wallet_apk how to download Google Wallet Apk me and asks me if I could give him a cigarette. The last white guy is confused about his wish so a fish asks him Come on, what do you what? and he is like Well, I think I will have a http://semeboosit197023.eklablog.com/#get_no_file_hosting_curren_y_pilot_talk_2 get no file hosting Curren Y Pilot Talk 2 coke. Of course there is lingerie on her there but http://febtreadines1985.freeforums.org/#where_from_get_no_ads_lecrae_gravity where from get no ads Lecrae Gravity anyway she looks very hot there. The celebrity was standing right near to him and he obviously swallowed his http://flavors.me/lafoodtili1987/#link_to_mw3_aimbot_xbox_360 link to Mw3 Aimbot Xbox 360 tongue.
{{Definition|'''Information visualization ''(InfoVis)''''' produces (interactive) visual representations of [[abstract data]] to reinforce human cognition; thus enabling the viewer to gain knowledge about the internal structure of the data and causal relationships in it.}}
 
{{Definition|'''Information visualization ''(InfoVis)''''' is the communication of [[abstract data]] through the use of interactive visual interfaces. [Keim et al., 2006]}}
 
== Definitions ==
 
{{Quotation|Compact graphical presentation and user interface for
*manipulating large numbers of items 
*possibly extracted from far larger datasets
Enables users to  make
*discoveries,
*decisions, or 
*explanations
 
about
*patterns (trend, cluster, gap, outlier...),
*groups of items, or
*individual items.|[Plaisant, 2001]}}
 
{{Quotation|The use of computer-supported, interactive, visual representations of [[abstract data]] to amplify [[cognition]].|[Card et al., 1999]}}
{{Quotation|Information visualization utilizes computer  graphics and [[interaction]] to assist humans in solving problems.|[Purchase et al., 2008, p. 58]}}
 
{{Quotation|Information visualization is a set of technologies that use visual computing to amplify human [[cognition]] with abstract information.|[Card, 2008, p. 542]}}
 
{{Quotation|Information visualization promises to help us speed our understanding and action in a world of increasing  information volumes.|[Card, 2008, p. 542]}}
 
{{Quotation|The purpose of information visualization is to amplify cognitive performance, not just to create interesting pictures. Information visualizations should do for the mind what automobiles do for the feet.|[Card, 2008, p. 539]}}
 
{{Quotation|Information visualizations attempt to efficiently map data variables onto visual dimensions in order to create graphic representations.|[Gee et al., 2005]}}
 
{{Quotation|Information visualization, an increasingly important subdiscipline within [[HCI (Human-Computer Interaction)|HCI]], focuses on graphical mechanisms designed to show the structure of information and improve the cost of access to large data repositories. In printed form, information visualization has included the display of numerical data (e.g., bar charts, plot charts, pie charts), combinatorial relations (e.g., drawings of graphs), and geographic data (e.g., encoded maps). Computer-based systems, such as the information visualizer and [[Dynamic query|dynamic queries]] have added interactivity and new visualization techniques (e.g., 3D, animation).|[Averbuch, 2004]}}
 
{{Quotation|Visual representations of the semantics, or meaning, of information. In contrast to [[Scientific Visualization|scientific visualization]], information visualization typically deals with nonnumeric, nonspatial, and high-dimensional data.|[Chen, 2005]}}
 
{{Quotation|A method of presenting data or information in non-traditional, interactive graphical forms. By using 2-D or 3-D color graphics and animation, these visualizations can show the structure of information, allow one to navigate through it, and modify it with graphical interactions.|[UIUC DLI, 1998]}}
 
{{Quotation|As a subject in computer science, information visualization is the use of interactive, sensory representations, typically visual, of abstract data to reinforce cognition.<br>Information visualization is a complex research area. It builds on theory in [[information design]], computer graphics, human-computer interaction and cognitive science.<br>Practical application of information visualization in computer programs involves selecting, transforming and representing abstract data in a form that facilitates human interaction for exploration and understanding.<br>Important aspects of information visualization are the interactivity and dynamics of the visual representation. Strong techniques enable the user to modify the visualization in real-time, thus affording unparalleled perception of patterns and structural relations in the abstract data in question.<br>
Although much work in information visualization regards to visual forms, auditory and other sensory representations are also of concern.|[Wikipedia, 2005]}}
{{Quotation|The study of how to effectively present information visually. Much of the work in this field focuses on creating innovative graphical displays for complicated datasets, such as census results, scientific data, and databases. An example problem would be deciding how to display the pages on a website or the files on a hard disk. Visualization techniques include selective hiding of data, layering data, taking advantage of 3-dimensional space, using scaling techniques to provide more space for more important information (e.g. Fisheye views), and taking advantage of psychological principles of layout, such as proximity, alignment, and shared visual properties (e.g. color).|[Usability First, 2003]}}
 
{{Quotation|'''Information visualization''', sometimes called InfoVis, is a special kind of visualization. Visualization is a part of computer graphics, which is in turn a subset of computer science.<br><br>Visualization is defined as follows [Card et al., 1998]: Visualization is the use of interactive visual representations of data to amplify cognition. This means that the data is transformed into an image, it is mapped to screen space. The image can be changed by users as they proceed working with it. This interaction is important as it allows for constant redefinition of goals when new insight into the data has been gained.<br><br>Visualization makes use of what is called external [[cognition]] [Card et al., 1998]. External resources are used for thinking. People are relieved from having to imagine everything. Instead they can just look at an image. This is only possible because human vision has a very large bandwidth, the largest of all senses [Card et al., 1998].<br><br>Information visualization is visualization of [[abstract data]]. This is data that has no inherent mapping to space. Examples for abstract data are the results of a survey or a database of the staff of a company containing names, addresses, salary and other attributes.<br><br>Information visualization should be seen in contrast to [[Scientific Visualization|scientific visualization]], which deals with physically-based data. This kind of data is defined in reference to space coordinates, which makes it relatively easy to visualize in an intuitive way. The space coordinates in the dataset are mapped to screen coordinates. Examples are geographic data and computer tomography data of a body.<br><br>Visualization of abstract data is not straightforward. One has to find a good way to map data values to screen space. It makes a difference whether the data is structured or unstructured. Examples for structured data are networks, software, and algorithms. This kind of data does not play a role in this thesis, only unstructured data is used here.<br><br>Unstructured data is a collection of records with a number of different criteria in each record. The records can be, for instance, the individual fish in a fish-catch. Of each fish the following criteria can be recorded: species, weight, sex, and different measurements of length [...]. The records are arranged in rows, the criteria make up the columns of a table. The records are also called observations. The criteria are sometimes called variables, and sometimes dimensions. [...]|[Voigt, 2002]}}
 
{{Quotation|involves abstract, nonspatial data|[Tory and M?ller, 2004]}}
 
{{Quotation|In [[Information Visualization|information visualization]], the graphical models may represent [[Abstract data|abstract]] concepts and relationships that do not necessarily have a counterpart in the physical world, e.g., information describing user accesses to pages of an Internet portal or records describing selected properties of different car brands and models. Typically, each data unity describes multiple related attributes (usually more than four) that are not of a spatial or temporal nature. Although spatial and temporal attributes may occur, the data exists in an abstract (conceptual) data space.|[Ferreira and Levkowitz, 2003]}}
 
== Overview ==
 
Application of information visualization on the computer involves providing means to transform and represent data in a form that allows and encourages human interaction. Data can therefore be analyzed by [[exploratory data analysis|''exploration'']] rather than pure reasoning; users can develop understanding for structures and connections in the data by observing the immediate effects their interaction has upon the visualization.
 
[[Image:zook_large.gif|right|thumb|250px|Information Visualization Example]][[Image:boom.gif|right|thumb|250px|Visualization of a directory structure using a botanical model]]
 
== See also ==
*[[Visualization]]
*[[Scientific Visualization]]
 
== References ==
 
*[Averbuch, 2004] Michael Averbuch, ''As you Like It: Tailorable Information Visualization'', Database Visualization Research Group, Tufts University, 2004.
*[Card, 2008] Stuart Card, Information visualization, in A. Sears and J.A. Jacko (eds.), The Human-Computer Interaction Handbook: Fundamentals, Evolving Technologies, and Emerging Applications, Lawrence Erlbaum Assoc Inc, 2007.
*[Card et al., 1999] Card, S. and Mackinlay, J. and Shneiderman, B., Readings in Information Visualization: Using Vision to Think, Morgan Kaufmann Publishers, 1999.
*[Chen, 2005] Chen, C. [ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=31454&arnumber=1463074&count=14&index=3 Top 10 Unsolved Information Visualization Problems], IEEE Computer Graphics and Applications, 25(4):12-16, July-Aug. 2005.
* [Ferreira and Levkowitz, 2003] Maria Cristina Ferreira de Oliveira, Haim Levkowitz, [doi.ieeecomputersociety.org/10.1109/TVCG.2003.1207445 From Visual Data Exploration to Visual Data Mining: A Survey], IEEE Transactions on Visualization and Computer Graphics, vol. 9, no. 3, pp. 378-394, July-September, 2003.
*[Gee et al., 2005] Gee, A.G., Yu, M., and Grinstein, G.G., Dynamic and Interactive Dimensional Anchors for Spring-Based Visualizations. Technical Report, Computer Science, University of Massachussetts Lowell.
*[Keim et al., 2006] Keim, D.A.; Mansmann, F. and Schneidewind, J. and Ziegler, H., Challenges in Visual Data Analysis, Proceedings of Information Visualization (IV 2006), IEEE, p. 9-16, 2006.
*[Plaisant, 2001] Plaisant, C., Information Visualization - Lecture Notes, Created at: November 2001.
*[Purchase et al., 2008] Purchase, H. C., Andrienko, N., Jankun-Kelly, T. J., and Ward, M. 2008. Theoretical Foundations of Information Visualization. In information Visualization: Human-Centered Issues and Perspectives, A. Kerren, J. T. Stasko, J. Fekete, and C. North, Eds. Lecture Notes In Computer Science, vol. 4950. Springer-Verlag, Berlin, Heidelberg, 46-64. DOI= lololdx.doi.org/10.1007/978-3-540-70956-5_3
*[Tory and M?ller, 2004] Melanie Tory and Torsten M?ller, Human Factors in Visualization Research, ''IEEE Transactions on Visualization and Computer Graphics'', 10(1):72-84, January/February 2004.
*[UIUC DLI, 1998] University of Illinois at Urbana-Champaign Digital Libraries Initiative, UIUC DLI Glossary. Created: November 23, 1998. dli.grainger.uiuc.edu/glossary.htm
*[Usability First, 2003] Usability First, Usability Glossary. Retrieved at: 2003. www.usabilityfirst.com/glossary/main.cgi?function=display_term&term_id=5
*[Voigt, 2002]: Robert Voigt, [www.vrvis.at/via/resources/DA-RVoigt/masterthesis.html An Extended Scatterplot Matrix and Case Studies in Information Visualization], Master's thesis, Hochschule Magdeburg-Stendal, 2002, [www.vrvis.at/vis/resources/DA-RVoigt/node4.html ''Classification and Definition of Terms'']
*[Wikipedia, 2005] Wikipedia, Information visualization. Retrieved at: July 19, 2005. en.wikipedia.org/wiki/Information_visualization
== External links ==
*www.math.yorku.ca/SCS/Gallery/ has a lot of (positive and negative) examples including historical milestones.
[[Category:Glossary]]
[[Category:semi-protected]]

Latest revision as of 11:01, 15 August 2013

Information visualization (InfoVis) produces (interactive) visual representations of abstract data to reinforce human cognition; thus enabling the viewer to gain knowledge about the internal structure of the data and causal relationships in it.
Information visualization (InfoVis) is the communication of abstract data through the use of interactive visual interfaces. [Keim et al., 2006]

Definitions

Compact graphical presentation and user interface for
  • manipulating large numbers of items
  • possibly extracted from far larger datasets

Enables users to make

  • discoveries,
  • decisions, or
  • explanations

about

  • patterns (trend, cluster, gap, outlier...),
  • groups of items, or
  • individual items.
[Plaisant, 2001]


The use of computer-supported, interactive, visual representations of abstract data to amplify cognition.
[Card et al., 1999]


Information visualization utilizes computer graphics and interaction to assist humans in solving problems.
[Purchase et al., 2008, p. 58]


Information visualization is a set of technologies that use visual computing to amplify human cognition with abstract information.
[Card, 2008, p. 542]


Information visualization promises to help us speed our understanding and action in a world of increasing information volumes.
[Card, 2008, p. 542]


The purpose of information visualization is to amplify cognitive performance, not just to create interesting pictures. Information visualizations should do for the mind what automobiles do for the feet.
[Card, 2008, p. 539]


Information visualizations attempt to efficiently map data variables onto visual dimensions in order to create graphic representations.
[Gee et al., 2005]


Information visualization, an increasingly important subdiscipline within HCI, focuses on graphical mechanisms designed to show the structure of information and improve the cost of access to large data repositories. In printed form, information visualization has included the display of numerical data (e.g., bar charts, plot charts, pie charts), combinatorial relations (e.g., drawings of graphs), and geographic data (e.g., encoded maps). Computer-based systems, such as the information visualizer and dynamic queries have added interactivity and new visualization techniques (e.g., 3D, animation).
[Averbuch, 2004]


Visual representations of the semantics, or meaning, of information. In contrast to scientific visualization, information visualization typically deals with nonnumeric, nonspatial, and high-dimensional data.
[Chen, 2005]


A method of presenting data or information in non-traditional, interactive graphical forms. By using 2-D or 3-D color graphics and animation, these visualizations can show the structure of information, allow one to navigate through it, and modify it with graphical interactions.
[UIUC DLI, 1998]


As a subject in computer science, information visualization is the use of interactive, sensory representations, typically visual, of abstract data to reinforce cognition.
Information visualization is a complex research area. It builds on theory in information design, computer graphics, human-computer interaction and cognitive science.
Practical application of information visualization in computer programs involves selecting, transforming and representing abstract data in a form that facilitates human interaction for exploration and understanding.
Important aspects of information visualization are the interactivity and dynamics of the visual representation. Strong techniques enable the user to modify the visualization in real-time, thus affording unparalleled perception of patterns and structural relations in the abstract data in question.
Although much work in information visualization regards to visual forms, auditory and other sensory representations are also of concern.
[Wikipedia, 2005]


The study of how to effectively present information visually. Much of the work in this field focuses on creating innovative graphical displays for complicated datasets, such as census results, scientific data, and databases. An example problem would be deciding how to display the pages on a website or the files on a hard disk. Visualization techniques include selective hiding of data, layering data, taking advantage of 3-dimensional space, using scaling techniques to provide more space for more important information (e.g. Fisheye views), and taking advantage of psychological principles of layout, such as proximity, alignment, and shared visual properties (e.g. color).
[Usability First, 2003]


Information visualization, sometimes called InfoVis, is a special kind of visualization. Visualization is a part of computer graphics, which is in turn a subset of computer science.

Visualization is defined as follows [Card et al., 1998]: Visualization is the use of interactive visual representations of data to amplify cognition. This means that the data is transformed into an image, it is mapped to screen space. The image can be changed by users as they proceed working with it. This interaction is important as it allows for constant redefinition of goals when new insight into the data has been gained.

Visualization makes use of what is called external cognition [Card et al., 1998]. External resources are used for thinking. People are relieved from having to imagine everything. Instead they can just look at an image. This is only possible because human vision has a very large bandwidth, the largest of all senses [Card et al., 1998].

Information visualization is visualization of abstract data. This is data that has no inherent mapping to space. Examples for abstract data are the results of a survey or a database of the staff of a company containing names, addresses, salary and other attributes.

Information visualization should be seen in contrast to scientific visualization, which deals with physically-based data. This kind of data is defined in reference to space coordinates, which makes it relatively easy to visualize in an intuitive way. The space coordinates in the dataset are mapped to screen coordinates. Examples are geographic data and computer tomography data of a body.

Visualization of abstract data is not straightforward. One has to find a good way to map data values to screen space. It makes a difference whether the data is structured or unstructured. Examples for structured data are networks, software, and algorithms. This kind of data does not play a role in this thesis, only unstructured data is used here.

Unstructured data is a collection of records with a number of different criteria in each record. The records can be, for instance, the individual fish in a fish-catch. Of each fish the following criteria can be recorded: species, weight, sex, and different measurements of length [...]. The records are arranged in rows, the criteria make up the columns of a table. The records are also called observations. The criteria are sometimes called variables, and sometimes dimensions. [...]
[Voigt, 2002]


involves abstract, nonspatial data
[Tory and M?ller, 2004]


In information visualization, the graphical models may represent abstract concepts and relationships that do not necessarily have a counterpart in the physical world, e.g., information describing user accesses to pages of an Internet portal or records describing selected properties of different car brands and models. Typically, each data unity describes multiple related attributes (usually more than four) that are not of a spatial or temporal nature. Although spatial and temporal attributes may occur, the data exists in an abstract (conceptual) data space.
[Ferreira and Levkowitz, 2003]


Overview

Application of information visualization on the computer involves providing means to transform and represent data in a form that allows and encourages human interaction. Data can therefore be analyzed by exploration rather than pure reasoning; users can develop understanding for structures and connections in the data by observing the immediate effects their interaction has upon the visualization.

Information Visualization Example
Visualization of a directory structure using a botanical model

See also

References

  • [Averbuch, 2004] Michael Averbuch, As you Like It: Tailorable Information Visualization, Database Visualization Research Group, Tufts University, 2004.
  • [Card, 2008] Stuart Card, Information visualization, in A. Sears and J.A. Jacko (eds.), The Human-Computer Interaction Handbook: Fundamentals, Evolving Technologies, and Emerging Applications, Lawrence Erlbaum Assoc Inc, 2007.
  • [Card et al., 1999] Card, S. and Mackinlay, J. and Shneiderman, B., Readings in Information Visualization: Using Vision to Think, Morgan Kaufmann Publishers, 1999.
  • [Chen, 2005] Chen, C. [ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=31454&arnumber=1463074&count=14&index=3 Top 10 Unsolved Information Visualization Problems], IEEE Computer Graphics and Applications, 25(4):12-16, July-Aug. 2005.
  • [Ferreira and Levkowitz, 2003] Maria Cristina Ferreira de Oliveira, Haim Levkowitz, [doi.ieeecomputersociety.org/10.1109/TVCG.2003.1207445 From Visual Data Exploration to Visual Data Mining: A Survey], IEEE Transactions on Visualization and Computer Graphics, vol. 9, no. 3, pp. 378-394, July-September, 2003.
  • [Gee et al., 2005] Gee, A.G., Yu, M., and Grinstein, G.G., Dynamic and Interactive Dimensional Anchors for Spring-Based Visualizations. Technical Report, Computer Science, University of Massachussetts Lowell.
  • [Keim et al., 2006] Keim, D.A.; Mansmann, F. and Schneidewind, J. and Ziegler, H., Challenges in Visual Data Analysis, Proceedings of Information Visualization (IV 2006), IEEE, p. 9-16, 2006.
  • [Plaisant, 2001] Plaisant, C., Information Visualization - Lecture Notes, Created at: November 2001.
  • [Purchase et al., 2008] Purchase, H. C., Andrienko, N., Jankun-Kelly, T. J., and Ward, M. 2008. Theoretical Foundations of Information Visualization. In information Visualization: Human-Centered Issues and Perspectives, A. Kerren, J. T. Stasko, J. Fekete, and C. North, Eds. Lecture Notes In Computer Science, vol. 4950. Springer-Verlag, Berlin, Heidelberg, 46-64. DOI= lololdx.doi.org/10.1007/978-3-540-70956-5_3
  • [Tory and M?ller, 2004] Melanie Tory and Torsten M?ller, Human Factors in Visualization Research, IEEE Transactions on Visualization and Computer Graphics, 10(1):72-84, January/February 2004.
  • [UIUC DLI, 1998] University of Illinois at Urbana-Champaign Digital Libraries Initiative, UIUC DLI Glossary. Created: November 23, 1998. dli.grainger.uiuc.edu/glossary.htm
  • [Usability First, 2003] Usability First, Usability Glossary. Retrieved at: 2003. www.usabilityfirst.com/glossary/main.cgi?function=display_term&term_id=5
  • [Voigt, 2002]: Robert Voigt, [www.vrvis.at/via/resources/DA-RVoigt/masterthesis.html An Extended Scatterplot Matrix and Case Studies in Information Visualization], Master's thesis, Hochschule Magdeburg-Stendal, 2002, [www.vrvis.at/vis/resources/DA-RVoigt/node4.html Classification and Definition of Terms]
  • [Wikipedia, 2005] Wikipedia, Information visualization. Retrieved at: July 19, 2005. en.wikipedia.org/wiki/Information_visualization

External links

  • www.math.yorku.ca/SCS/Gallery/ has a lot of (positive and negative) examples including historical milestones.