Tasks Taxonomy for Graphs
screensaver maschili capelli neri con meches errico ruggeri rosolino foto satureja primo lesbo na krilima ljubavi elezioni comunali 2004 risultati multifunzione inkjet brother seed il giustiziere di londra hotel economico torino schmorl guida sillen till turkish music video ossezia ps a400 canon stadio cellulite this is football 2 cambiare password duo pro 1gb volo aereo palermo torino mikela solo para adultos xxx www beckam com apple imac 2 0 mati 263 s pietroburgo da rios lezioni di sesso orale auto noleggio bruxelles sperm shack com candela provincia varese it tv 15 pollici gallery 5 modem ethernet adsl d-link dsl-300t epson fx 880 immobiliare a trapani suoneria polifoniche free ibm t magnano dns adsl www internazionale com hot t-shirt federico bruno gay gang bang carinzia radio fm bluetooth bump burgos le montagne russe doro goldbird mosaico artistico grischun www club itio it lavatrici candy 1200 enlish ragazzi gai scherzo town without pity karen berg diclofenac san gel 50 g quattro marmittoni alle grandi manovre la squadra. stagione 1. episodio 24 tabou km0 fiat punto multijet diesel auto km 0 kim sun ila modem bluetooth 56k v92 perdono coppie milano copione cavo accessorio audio video offerta viaggio a marsa alam nike - air pegasus tc server intel 4 casio exilim ex-z110 vestir y palmari hp stilo burberry london black horror - le messe nere www davidbeckham it largo factotum numa numa eie gangroma usb wi-fi zyxel latino bachata midi siemens italia l astronave foto porno fat donna grassa o zon dragosta din tei maquinas agricolas dali grand c vip gratis arsenal (parigi) clk mercedes fonoassorbente modding comandatuba fornello 2 bruciatori quando l amore diventa poesia trust fotocamera sedona cose fare porno gif trucchi die hard vendetta ducati usata dragonballx www catanzaro it in viaggio con l arcangelo grazia miky adsl promozione polsat programma gratis completo dvd pc i migliori titoli nintendo del 2003 www smack down hoobstank the reason viareggio alberghi scualo bianco delia scala grandi labra these word giochi play statyon cortez hotel il roseto ferretti politica on line la prima cosa bella moto di gara prodotti musicali op 18 gps bluetooth garmin aciclovir eg 25 cpr 200 mg carosello di canzoni cantieri navali a messina katanga orario e tragitto dei treni the secret ennepi que vengan los bomberos alpin extreme biagio antonacci concerto lettore memory card pcmcia canon powershot 5 0-megapixel frigoriferi da auto r1 2002 poesia di pace christmast terme fanghi qualcuno in ascolto le voci del mare bostonstore tax lawyer adozione internazionale libri muraro lorenzo spa versioni latino cicerone gioielleria distefano erotik oyunlar nuevo laredo cultura multimediale hotel locanda al mercante dawson protesti bancari bassethound il cielo di beirut dvd dual orecchino di perla dvd need for madness - carmageddon teen sesso d-link dwl-g650 108 kalua cocktails lo squalo 4 - la vendetta vine del norte aoc lm925 liviu guta daniela de ce ma minti napoved vremena elga forti video coltivazione del riso mulher de figo doccia solare solar jet ulead cool 3d caccia al lupo gruge paulin roma cavo jack 3 5 goodman gilman dvd recorder lg osvaldo valenti deserti. sabbie roventi dertona pro ject wood campeggi a viareggio micro telecamera uniform sex mp3 creative zen nano plus uomo a napoli giochi a 2 giocatori hard disk 160gb diamondmax plus 9 fouco nel fuoco azur storie russia doggi gif nomi == Low-Level Tasks ==
From [Amar et al. 2005] and [Lee et al 2006].
- General Tasks
Task | Description |
Retrieve Value | Given a set of cases, find attributes of those cases. |
Filter | Given some conditions on attributes values, find data cases satisfying those conditions. |
Compute Derived Value | Given a set of data cases, compute an aggregate numeric representation of those data cases.(e.g. average, median, and count) |
Find Extremum | Find data cases possessing an extreme value of an attribute over its range within the data set. |
Sort | Given a set of data cases, rank them according to some ordinal metric.
Determine Range Given a set of data cases and an attribute of interest, find the span of values within the set. |
Characterize Distribution | Given a set of data cases and a quantitative attribute of interest, characterize the distribution of that attribute’s values over the set. |
Find Anomalies | Identify any anomalies within a given set of data cases with respect to a given relationship or expectation, e.g. statistical outliers. |
Cluster | Given a set of data cases, find clusters of similar attribute values. |
Correlate | Given a set of data cases and two attributes, determine useful relationships between the values of those attributes. |
Scan | Quickly review a set of items. |
Set Operation | Given multiple sets of items, perform set operations on them. For example, find the intersection of the set of nodes. |
- Graph Specific Tasks
Task | Description |
Find Adjacent Nodes | Given a node, find its adjacent nodes. |
Graph Task Taxonomy
Examples are illustrated using 4 types of graphs:
- (FOAF): friend-of-a-friend
- (FW): food web
- (GO): gene ontology
- (ARM): airport routing map
Topology-based Tasks
Task | Description | Examples |
Adjacency (direct connection) |
|
|
Accessibility (direct or indirect connection) |
|
|
Commmon Connection |
|
|
Connectivty |
|
|
Attribute-based Tasks
Task | Description | Examples |
On the Nodes |
|
|
On the Links |
|
|
Browsing Tasks
Task | Description | Examples |
Follow Path |
|
|
Revisit |
|
|
Overview Tasks
This is a compound exploratory task to get estimated values quickly. For example, we might ask users to estimate the size of the social network. Note that sometimes it is more important to be able to estimate the answer than to get an accurate one. Some of the topology tasks can be done easily using an overview of the graph as well. For example, using particular layout algorithms, it is easy to see whether or not there are clusters and connected components. Other algorithms help to find shortest paths between nodes. Overview also helps to find patterns.
Examples:
- estimate size of the network
- estimate the number of connected components
- is the network clustered?
- can you identify different patterns of connection?
- (FOAF) has the network a small-world structure?
High-Level Tasks
High-Level tasks which are not a combination of lower level tasks.
- When we compare two or more food webs, we can ask the following questions: What do they have in common? What are the differences among those food webs? Is there any missing or conflicting information?
- Due to errors in the data, several nodes may represent the same entity. For example, the co-authorship graphs often have duplicate author nodes. One important task is to identify whether two or more nodes represent the same person.
- How has the graph changed over time?
Other tasks
There seems to be a set of tasks in the world that match very few of these, but show up often. I welcome others' ideas of how to categorize them:
"what is the general structure of this graph?" http://www.networkweaving.com/blog/2006/09/nola-networks.html
"what is the distribution of vertex degree in this graph?" (That is, "how are well-linked nodes different from under-linked nodes?") http://research.microsoft.com/research/pubs/view.aspx?type=Publication